Separation of Music Signals by Harmonic Structure Modeling.dvi
نویسندگان
چکیده
Separation of music signals is an interesting but difficult problem. It is helpful for many other music researches such as audio content analysis. In this paper, a new music signal separation method is proposed, which is based on harmonic structure modeling. The main idea of harmonic structure modeling is that the harmonic structure of a music signal is stable, so a music signal can be represented by a harmonic structure model. Accordingly, a corresponding separation algorithm is proposed. The main idea is to learn a harmonic structure model for each music signal in the mixture, and then separate signals by using these models to distinguish harmonic structures of different signals. Experimental results show that the algorithm can separate signals and obtain not only a very high Signalto-Noise Ratio (SNR) but also a rather good subjective audio quality.
منابع مشابه
Separation of Music Signals by Harmonic Structure Modeling
Separation of music signals is an interesting but difficult problem. It is helpful for many other music researches such as audio content analysis. In this paper, a new music signal separation method is proposed, which is based on harmonic structure modeling. The main idea of harmonic structure modeling is that the harmonic structure of a music signal is stable, so a music signal can be represen...
متن کاملAudio Signal Separation and Classification : A Review Paper
Music signals are not solely characterized because of other mixed audio signals. Mixed audio signals contain music signals mixed with speech signals, voice and even background noise.Thus, mixed signals need to classify separately. Researchers have developed many algorithms to solve this problem keeping in mind with their characteristic features of music signals: by timbre, harmony, pitch, loudn...
متن کاملUsing Pitch, Amplitude Modulation, and Spatial Cues for Separation of Harmonic Instruments from Stereo Music Recordings
Recent work in blind source separation applied to anechoic mixtures of speech allows for improved reconstruction of sources that rarely overlap in a time-frequency representation. While the assumption that speech mixtures do not overlap significantly in time-frequency is reasonable, music mixtures rarely meet this constraint, requiring new approaches. We introduce a method that uses spatial cue...
متن کاملActive Source Estimation for Improved Source Separation
Recent work in blind source separation applied to anechoic mixtures of speech allows for reconstruction of sources that rarely overlap in a time-frequency representation. While the assumption that speech mixtures do not overlap significantly in time-frequency is reasonable, music mixtures rarely meet this constraint, requiring new approaches. We introduce a method that uses spatial cues from an...
متن کاملBayesian group sparse learning for music source separation
Nonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative signals with the sparseness constraint. The signals are adequately represented by a set of basis vectors and the corresponding weight parameters. NMF has been successfully applied for blind source separation and many other signal processing systems. Typically, controlling the degree of sparseness a...
متن کامل